Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246445

RESUMO

Dengue virus infection has significantly increased, with reported cases soaring from 505,430 in 2000 to 2,809,818 in 2022, emphasizing the need for effective treatments. Among the eleven structural and non-structural proteins of DENV, Non-structural protein 1 (NS1) has emerged as a promising target due to its diverse role in modulating the immune response, inducing vascular leakage, and facilitating viral replication and assembly. Monoclonal antibodies are the sole therapeutics to target NS1, but concerns about their cross-reactivity persist. Given these concerns, our study focuses on designing a novel Peptide Ligand Conjugate (PLC) as a potential alternative immunotherapeutic agent against NS1. This PLC aims to mediate the immune elimination of soluble NS1 and NS1-presenting DENV-infected host cells by pre-existing vaccine-induced immunity. By employing the High Throughput Virtual Screening (HTVS) method, QikProp analysis, and Molecular Dynamics studies, we identified three hits from Asinex Biodesigned Ligands out of 220,177 compounds that show strong binding affinity towards the monoclonal binding site of NS1 protein. After a rigorous analysis of physicochemical characteristics, antigenicity, allergenicity, and toxicity using various servers, we selected two peptides: the minimum epitopic region of the Diphtheria and Tetanus toxins as the peptide components of the PLCs. A non-cleavable, non-reactive oxime linker connected the ligand with the peptide through oxime and amide bonds. DPT vaccine is widely used in dengue-endemic countries, and it has been reported that antibodies titer against MER of Diphtheria toxin and Tetanus toxins persist lifelong in DPT-vaccinated people. Therefore, once the rationally designed PLCs bind to NS1 through the ligands, the peptide will induce an immune response against NS1 by triggering pre-existing DPT antibodies and activating memory cells. This orchestrated immune response will destroy soluble NS1 and NS1-expressing DENV-infected cells, thereby reducing the illness of severe dengue hemorrhagic fever and the DENV infection, respectively. Given the increasing demand for new therapeutics for DENV treatment, further investigation into this novel immune-therapeutic strategy may offer a new avenue for treating mild and severe dengue infections.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Humanos , Dengue/terapia , Dengue/diagnóstico , Ligantes , Toxina Tetânica , Peptídeos , Imunoterapia , Oximas , Proteínas não Estruturais Virais , Anticorpos Antivirais
2.
Mol Divers ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127294

RESUMO

The continuous emergence of resistance against most frontline antimalarial drugs has led to countless deaths in malaria-endemic countries, counting 619,000 deaths in 2021, with mutation in drug targets being the sole cause. As mutation is correlated frequently with fitness cost, the likelihood of mutation emergence in multiple targets at a time is extremely low. Hence, multitargeting compounds may seem promising to address drug resistance issues with additional benefits like increased efficacy, improved safety profile, and the requirement of fewer pills compared to traditional single and combinational drugs. In this study, we attempted to use the High Throughput Virtual Screening approach to predict multitarget inhibitors against six chemically validated Plasmodium falciparum (Pf) kinases (PfPKG, PfMAP2, PfCDPK4, PfTMK, PfPK5, PfPI4K), resulting in 21 multitargeting hits. The molecular dynamic simulation of the top six complexes (Myricetin-MAP2, Quercetin-CDPK4, Myricetin-TMK, Quercetin-PKG, Salidroside-PK5, and Salidroside-PI4K) showed stable interactions. Moreover, hierarchical clustering reveals the structural divergence of the compounds from the existing antimalarials, indicating less chance of cross-resistance. Additionally, the top three hits were validated through parasite growth inhibition assays, with quercetin and myricetin exhibiting an IC50 value of 1.84 and 3.93 µM, respectively.

3.
J Biomol Struct Dyn ; : 1-25, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528665

RESUMO

Compared to the previous year, there has been an increase of nearly 2 million malaria cases in 2021. The emergence of drug-resistant strains of Plasmodium falciparum, the most deadly malaria parasite, has led to a decline in the effectiveness of existing antimalarial drugs. To address this problem, the present study aimed to identify natural compounds with the potential to inhibit multiple validated antimalarial drug targets. The natural compounds from the Natural Product Activity and Species Source (NPASS) database were screened against ten validated drug targets of Plasmodium falciparum using a structure-based molecular docking method. Twenty compounds, with targets ranging from three to five, were determined as the top hits. The molecular dynamics simulations of the top six complexes (NPC246162 in complex with PfAdSS, PfGDH, and PfNMT; NPC271270 in complex with PfCK, PfGDH, and PfdUTPase) confirmed their stable binding affinity in the dynamic environment. The Tanimoto coefficient and distance matrix score analysis show the structural divergence of all the hit compounds from known antimalarials, indicating minimum chances of cross-resistance. Thus, we propose further investigating these compounds in biochemical and parasite inhibition studies to reveal the real therapeutic potential. If found successful, these compounds may be a new avenue for future drug discovery efforts to combat existing antimalarial drug resistance.Communicated by Ramaswamy H. Sarma.

4.
Mol Divers ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37079243

RESUMO

According to the Center for Disease Control and Prevention, as of August 23, 94 countries had confirmed 42,954 Monkeypox Virus cases. As specific monkeypox drugs are not yet developed, the treatment depends on repurposed FDA-approved drugs. According to a recent study, the Monkeypox outbreak is caused by a strain with a unique mutation, raising the likelihood that the virus will develop resistance to current drugs by acquiring mutations in the targets of currently used drugs. The probability of multiple mutations in two or more drug targets at a time is always low than mutation in a single drug target. Therefore, we identified 15 triple-targeting FDA-approved drugs that can inhibit three viral targets, including topoisomerase1, p37, and thymidylate kinase, using high throughput virtual screening approach. Further, the molecular dynamics simulation analysis of the top hits such as Naldemedine and Saquinavir with their respective targets reveals the formation of stable conformational changes of the ligand-protein complexes inside the dynamic biological environment. We suggest further research on these triple-targeting molecules to develop an effective therapy for the currently spreading Monkeypox.

5.
Life Sci ; 311(Pt A): 121121, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283456

RESUMO

AIMS: Malaria deaths occur primarily due to complicated malaria associated with the sequestration of Plasmodium falciparum-infected erythrocyte (PfIE) in the capillary microvasculature. This study aims to design peptide ligand conjugates (PLCs) for treating complicated malaria using various in silico techniques. The PLC includes a natural ligand for the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1): expressed explicitly on the surface of PfIE, and a highly immunogenic peptide derived from the commonly used peptide vaccines in malaria-endemic countries. The ligand is predicted to prevent the sequestration of PfIE, and the peptide is predicted to eliminate PfIE from circulation by the pre-existing vaccine-induced immunity. MAIN METHODS: The epitope identification from the vaccines and the analysis of physicochemical properties, antigenicity, allergenicity, and toxicity were performed using SVMTriP, ProtParam, VaxiJen, AllerTop, and ToxinPred servers, respectively. The high throughput virtual screening (HTVS) and drug-like properties analysis of natural compound ligands were carried out by Schrodinger-2021 software. The molecular dynamics simulations were performed through the WebGro server. KEY FINDINGS: HTVS revealed three bioactive natural ligands for PfEMP1 from (NPASS) database. Three super immunogenic peptides were identified from malaria-endemic countries' commonly used peptide vaccines. Finally, Nine PLCs were designed with different combinations of peptides and ligands with the suitable non-cleavable triazole linker. SIGNIFICANCE: Antimalarials have been losing efficacy in a time when malaria deaths in 2020 significantly increased than in 2019. In this scenario, further research on the designed PLCs may offer some innovative immune therapeutics for complicated malaria with minimum possibilities of drug resistance.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Ligantes , Vacinas Antimaláricas/uso terapêutico , Plasmodium falciparum , Malária/tratamento farmacológico , Eritrócitos , Peptídeos/uso terapêutico , Imunoterapia
6.
3 Biotech ; 12(9): 198, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35923684

RESUMO

Omicron, a variant of concern (VOC) of SARS-CoV-2, emerged in South Africa in November 2021. Omicron has been continuously acquiring a series of new mutations, especially in the spike (S) protein that led to high infectivity and transmissibility. Peptides targeting the receptor-binding domain (RBD) of the spike protein by which omicron and its variants attach to the host receptor, angiotensin-converting enzyme (ACE2) can block the viral infection at the first step. This study aims to identify antiviral peptides from the Antiviral peptide database (AVPdb) and HIV-inhibitory peptide database (HIPdb) against the RBD of omicron by using a molecular docking approach. The lead RBD binder peptides obtained through molecular docking were screened for allergenicity and physicochemical criteria (isoelectric point (pI) and net charge) required for peptide-based drugs. The binding affinity of the best five peptide inhibitors with the RBD of omicron was validated further by molecular dynamics (MD) simulation. Our result introduces five antiviral peptides, including AVP1056, AVP1059, AVP1225, AVP1801, and HIP755, that may effectively hinder omicron-host interactions. It is worth mentioning that all the three major sub-variants of omicron, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3), exhibits conserved ACE-2 interacting residues. Hence, the screened antiviral peptides with similar affinity can also interrupt the RBD-mediated invasion of different major sub-variants of omicron. Altogether, these peptides can be considered in the peptide-based therapeutics development for omicron treatment after further experimentation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03258-4.

7.
J Biomol Struct Dyn ; 40(19): 9543-9567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34062110

RESUMO

In view of many European countries and the USA leading to the second wave of COVID-19 pandemic, winter season, the evolution of new mutations in the spike protein, and no registered drugs and vaccines for COVID-19 treatment, the discovery of effective and novel therapeutic agents is urgently required. The degrees and frequencies of COVID-19 clinical complications are related to uncontrolled immune responses, secondary bacterial infections, diabetes, cardiovascular disease, hypertension, and chronic pulmonary diseases. It is essential to recognize that the drug repurposing strategy so far remains the only means to manage the disease burden of COVID-19. Despite some success of using single-target drugs in treating the disease, it is beyond suspicion that the virus will acquire drug resistance by acquiring mutations in the drug target. The possible synergistic inhibition of drug efficacy due to drug-drug interaction cannot be avoided while treating COVID-19 and allied clinical complications. Hence, to avoid the unintended development drug resistance and loss of efficacy due to drug-drug interaction, multi-target drugs can be promising tools for the most challenging disease. In the present work, we have carried out molecular docking studies of compounds from the FDA approved drug library, and the FDA approved and passed phase -1 drug libraries with ten therapeutic targets of COVID-19. Results showed that known drugs, including nine anti-inflammatory compounds, four antibiotics, six antidiabetic compounds, and one cardioprotective compound, could effectively inhibit multiple therapeutic targets of COVID-19. Further in-vitro, in vivo, and clinical studies will guide these drugs' proper allocation to treat COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , Pandemias , Simulação de Acoplamento Molecular , Vacinas contra COVID-19 , Reposicionamento de Medicamentos/métodos
8.
Infect Genet Evol ; 93: 104987, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216796

RESUMO

There has been a consistent rise in malaria cases in the last few years. The existing malaria control measures are challenged by insecticide resistance in the mosquito vector, drug résistance in parasite populations, and asymptomatic malaria (ASM) in healthy individuals. The absence of apparent malaria symptoms and the presence of low parasitemia makes ASM a hidden reservoir for malaria transmission and an impediment in malaria elimination efforts. This review focuses on ASM in malaria-endemic countries and the past and present research trends from those geographical locations. The harmful impacts of asymptomatic malaria on human health and its contribution to disease transmission are highlighted. We discuss certain crucial genetic changes in the parasite and host immune response necessary for maintaining low parasitemia leading to long-term parasite survival in the host. Since the chronic health effects and the potential roles for disease transmission of ASM remain mostly unknown to significant populations, we offer proposals for developing general awareness. We also suggest advanced technology-based diagnostic methods, and treatment strategies to eliminate ASM.


Assuntos
Infecções Assintomáticas , Erradicação de Doenças , Reservatórios de Doenças/parasitologia , Interações Hospedeiro-Parasita , Imunidade , Malária/parasitologia , Humanos , Malária/prevenção & controle , Malária/transmissão , Parasitemia/parasitologia , Medição de Risco
9.
Eur J Pharm Sci ; 151: 105375, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417398

RESUMO

The ongoing enigmatic COVID-19 outbreak, first reported from Wuhan, China, on last day of the year 2019, which has spread to 213 countries, territories/areas till 28th April 2020, threatens hundreds of thousands human souls. This devastating viral infection has stimulated the urgent development of viable vaccine against COVID-19 across the research institutes around the globe. The World Health Organization (WHO) has also confirmed that the recent pandemic is causing Public Health Emergency of International apprehension. Moreover, the earlier two pathogenic SARS-CoV and MERS-CoV and many others yet to be identified pose a universal menace. Here, in this piece of work, we have utilized an in silico structural biology and advanced immunoinformatic strategies to devise a multi-epitope subunit vaccine against ongoing COVID-19 infection. The engineered vaccine sequence is adjuvanted with ß-3 defensin and comprised of B-cell epitopes, HTL epitopes and CTL epitopes. This is very likely that the vaccine will be able to elicit the strong immune response. Further, specific binding of the engineered vaccine and immune cell receptor TLR3 was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores affirmed the stringency of engineered vaccine. The interaction is stable with minimal deviation in root-mean square deviation and root-mean-square fluctuation was confirmed by the molecular dynamics simulation experiment. The immune-simulation by C-ImmSim server, which mimics the natural immune environment, yielded more potent immune response data of B-cells, Th cells, Tc cells and IgG for vaccine. The encouraging data obtained from the various in-silico works indicated this vaccine as an effective therapeutic against COVID-19.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Epitopos/imunologia , Ensaios de Triagem em Larga Escala/métodos , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Sequência de Aminoácidos , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/imunologia , Sítios de Ligação , Engenharia Biomédica , COVID-19 , Vacinas contra COVID-19 , Biologia Computacional , Simulação por Computador , Infecções por Coronavirus/prevenção & controle , Desenho de Fármacos , Epitopos de Linfócito B , Humanos , Imunoglobulina G/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Proteoma , SARS-CoV-2 , Linfócitos T/imunologia , Receptor 3 Toll-Like/efeitos dos fármacos
10.
Int J Biol Macromol ; 160: 1-17, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470577

RESUMO

The present-day world is severely suffering from the recently emerged SARS-CoV-2. The lack of prescribed drugs for the deadly virus has stressed the likely need to identify novel inhibitors to alleviate and stop the pandemic. In the present high throughput virtual screening study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), and ADME properties to screen natural compounds. It has been documented that many natural compounds display antiviral activities, including anti-SARS-CoV effect. The present study deals with compounds of Natural Product Activity and Species Source (NPASS) database with known biological activity that probably impedes the activity of six essential enzymes of the virus. Promising drug-like compounds were identified, demonstrating better docking score and binding energy for each druggable targets. After an extensive screening analysis, three novel multi-target natural compounds were predicted to subdue the activity of three/more major drug targets simultaneously. Concerning the utility of natural compounds in the formulation of many therapies, we propose these compounds as excellent lead candidates for the development of therapeutic drugs against SARS-CoV-2.


Assuntos
Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Terapia de Alvo Molecular , Betacoronavirus/enzimologia , Betacoronavirus/fisiologia , Produtos Biológicos/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , SARS-CoV-2 , Fatores de Tempo , Interface Usuário-Computador , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...